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Figure 1. The s
The stereoselective syntheses of heptaprenylphosphoryl b-D-arabinofuranose and heptaprenylphospho-
ryl b-D-ribofuranose are described. In the synthesis of the D-arabino product, the stereoselectivity was
achieved by the coupling of a suitably protected b-D-arabinofuranosyl phosphate intermediate with an
activated form of heptaprenol and subsequent deprotection. In the case of the ribo-analog, the desired
b-anomer could be obtained by the more convenient phosphoramidite method. The products were suc-
cessfully employed in the mycobacterial epimerase assay.

� 2009 Elsevier Ltd. All rights reserved.
The global rise in tuberculosis and drug-resistant Mycobacte-
rium tuberculosis still present a threat to human health1 and
require the development of new drug targets and drugs. The
D-arabinan segments of the mycobacterial cell wall are excellent
targets for new drug development due to the xenobiotic status of
D-arabinofuranose.2,3 The presence of octahydroheptaprenylphosho-
ryl-b-D-arabinofuranose in M. smegmatis has been shown before.4,5

However, this metabolite is not produced in M. tuberculosis6 and its
role in bacteria remains unknown. A key arabinose donor for arab-
inan biosynthesis in mycobacteria is decaprenylphosphoryl b-D-
arabinofuranose (DPA),4 which is formed from its ribo- analog
(decaprenylphosphoryl b-D-ribofuranose; DPR) via a two-step epi-
merization catalyzed by the action of the Rv3790 and Rv3791 gene
products from M. tuberculosis.7 In order to investigate the activities
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tructures of heptaprenylphosphory
of the enzymes involved in the epimerization reaction we decided
to synthesize medium chain compounds—heptaprenyl (C35)-
analogs of DPA (1) and DPR (2) in addition to their previously
produced long chain—decaprenol (C50)-8,9 and short chain—nerol
(C10)-9,10 containing counterparts. Our aim was to test these as
possible substrates for the epimerase reaction and identify
compounds that would be suitable for the further develop-
ment of the epimerase assay. In an unrelated study a C35-lipid II
product was found to be a better substrate for bacterial
transglycosylases.11

A. The stereoselective synthesis of heptaprenylphosphoryl b-D-ara-
bino-furanose (1): In order to achieve stereoselectivity in the syn-
thesis of the title product and to obtain the unfavored b-anomer
(1,2-cis orientation) as the major product we have used the route
O

HO

OH

HO O O

OH

HO O

OH

1  R=  2     R=

b-D-arabino-(1) and b-D-ribo-(2) furanoses.
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Scheme 1. The stereoselective synthesis of heptaprenylphosphoryl b-D-arabino-furanose (1).
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Scheme 2. The stereoselective synthesis of heptaprenylphosphoryl b-D-ribo-furanose (2).
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described for the shorter analogs10 and DPA.8 According to this
scheme12 heptaprenol was converted into the corresponding tri-
chloroacetimidate intermediate (3, Scheme 1) which was then cou-
pled to 2,3,5-tri-O-TBDMS-b-D-arabinofuranosyl phosphate (4)10 to
yield the protected product 5. Deprotection with ammonium fluo-
ride in methanolic ammonia produced the heptaprenyl analog 1. In
the 1H NMR spectrum of 113 the H-1 signal appears as a triplet
(J1,2 = J1,P = 4.6 Hz), indicating that the product exists in the b-con-
figuration. The other features of the spectrum are in agreement
with the structure. The mass spectrum of 1(in the negative electro-
spray mode) produced the ion 705.452 (M�1) (see Fig. 1).

B. The stereoselective synthesis of heptaprenylphosphoryl b-D-ribo-
furanose (2): In contrast to the polyprenylphosphoryl-arabino
products where the desired b-D-configuration is not the favored
one, in the ribo-analogs (which possess the 1,2-trans configura-
tion) the b-anomer is the predominant one. Consequently, the hep-
taprenyl analog can be made by the more convenient
phophoramidite method, as already described for the synthesis of
DPR and the shorter analogs.9 Using this procedure14 heptaprenol
(6, Scheme 2) was first treated with 2-cyanoethyl N,N-diisopropyl-
chloro-phosphoramidite in the presence of diisopropyl ethylamine,
and the resulting phosphoramidite intermediate was coupled to
2,3,5-tri-O-TBDMS-ribofuranose (7)9 in the presence of 1H-tetra-
zole. Subsequent oxidation with hydrogen peroxide followed by
treatment with methanolic KOH gave heptaprenylphosphoryl-
2,3,5-tri-O-TBDMS-b-D-furanose (8). Removal of the TBDMS groups
as described above gave heptaprenylphosphoryl b-D-ribofuranose
(2). The H-1 signal in the 1H NMR spectrum of 2 (doublet,
J1,P = 4.8, Hz; J1,2 = 0 Hz) confirms that the product exists in the b-
D-configuration The mass spectrum of 2 (in the negative electro-
spray mode) produced the ion 705.448 (M�1).

C. Investigation of decaprenylphosphoryl b-D-ribofuranose (DPR),
heptaprenylphosphoryl b-D-ribofuranose (HPR), and nerylphosphoryl
b-D-ribofuranose (NPR) as possible substrates for the epimerization
reaction15: Due to the high hydrophobicity of the natural substrate
for epimerization catalyzed by Rv3790/Rv3791, that is, DPR, alter-
native, more water-soluble substrates—HPR (2) and NPR were
tested.16 The compounds were used in 2 mM concentration and
the reaction mixtures contained Rv3790 and Rv3791 gene products
present in the soluble extracts of the Escherichia coli strains pro-
ducing the respective enzymes. Conversion of the tested substrates
to the corresponding Ara-containing compounds was examined by
GC analysis of the alditol acetates prepared from the monosaccha-
rides released from the reaction mixtures after their incubation:
Increase in Ara content over the control reaction mixtures with
inactivated enzymes reflected the activity of the Rv3790/91 en-
zymes. We found out that the best substrate in this assay was
HPR (2), which was converted about four times more efficiently
than DPR and about three times more efficiently than NPR. This
compound will thus be used for further optimization of the enzy-
matic assay and subsequent testing of the putative inhibitors of
the reaction.
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